Science From Gateway With HERMES

HERMES: <u>Heliophysics Environmental and</u>
<u>Radiation Monitoring Experiment Suite</u>

Jim Spann, Program Scientist NASA HQ Initial Gateway

Modules

Power and Propulsion Element (PPE)

Habitation and Logistics
Outpost (HALO)

First Science Payloads:

> HERMES - NASA

> ERSA¹ – ESA

 \triangleright IDA² – ESA/JAXA

Particles and fields instrumentation for Radiation and Space Weather studies

Of interest to **SMD** and **HEOMD Exploration**

Initial Gateway
Modules

Power and Propulsion Element (PPE)

Habitation and Logistics
Outpost (HALO)

First Science Payloads:

> HERMES - NASA

> ERSA¹ – ESA

 \triangleright IDA² – ESA/JAXA

Gateway Orbit 7 Day Period 3000 x 70000 km $(0.5 \times 11 R_F)$

Periapsis North Apoapsis South

- HERMES <u>Heliophysics Environmental Radiation</u>
 <u>Monitoring Experiment Suite</u>
- Composed of 3 particle instruments plus a set of magnetometers
- Capabilities are typical of in-situ space weather instruments

Instrument	Measurement	PI
EEA, Electron Spectrometer (electrons < 30 keV)	Electron Flux, Density, Speed, Temperature	D. Gershman, GSFC
SPAN-Ai, Ion Spectrometer (ions < 20 keV)	Ion Flux, Density, Speed, Temperature, M/Q Species	R. Livi, UC Berkeley
MERiT, Ion and Electron Telescope (energetic particles)	0.3 – 9 MeV Electrons, 1 – 190 MeV Ions, Flux	S. Kanekal, GSFC
NEMISIS (MAG) (3 magnetometers)	Magnetic Field Vector	E. Zesta, GSFC M. Moldwin, U Mich

HERMES Payload

MASS < 25 kg

 $(X,Y,Z) < 0.5 \times 0.5 \times 0.5$ m (Boom Stowed)

Magnetometer Boom Extends ~ 1 m

HERMES Goals

Goal A: Determine mechanisms of **solar wind** mass and energy transport

Goal B: Characterize energy, topology, and ion composition in the deep *magnetotail*

Goal C: Establish observational capabilities of an on-board pathfinder payload measuring local space weather to support deep-space and long-term human exploration

Science team to be augmented by international Interdisciplinary Science Teams (ROSES-20 amendment B18)
Selections pending

Solar Particle Directions when Sun Pointing (Based on 11 years data from L1)

Solar Particle Transport

HERMES View

HERMES on HALO

As an element to the Heliophysics System Observatory, HERMES offers several advantages for science

- As a triad with the two THEMIS/ARTEMIS probes (in equatorial lunar orbit) HERMES will probe the smaller scale (5 10 R_E) structures (e.g. the magnetopause, solar wind flux tubes, coronal mass ejections, shocks, flux ropes)
- Along with L1 monitors, HERMES will probe larger-scale features
- Energetic particle telescope to detect Solar Particle Events at Earth/Moon
- Ion Mass Spectrometer will map the loss of ionospheric ions through the magnetotail
- 11 R_E lunar apoapsis provides for studies of the vertical extent of the magnetotail

HERMES: <u>Heliophysics Environmental Radiation</u> <u>Monitoring Experiment Suite</u>

On track for May 2024 launch, 2025 lunar orbit, 2 years science operation in collaboration with HEAO to develop capabilities for real-time monitoring and space-weather alerts for deep-space missions (e.g. Mars), with compelling science investigations on behalf of SMD with participation of Gateway's international partners.

Hermes: Herald of the Olympians and protector of human heralds

